Modular Representations of Reductive Groups and Geometry of Affine Grassmannians

نویسنده

  • DANIEL JUTEAU
چکیده

By the geometric Satake isomorphism of Mirković and Vilonen, decomposition numbers for reductive groups can be interpreted as decomposition numbers for equivariant perverse sheaves on the complex affine Grassmannian of the Langlands dual group. Using a description of the minimal degenerations of the affine Grassmannian obtained by Malkin, Ostrik and Vybornov, we are able to recover geometrically some decomposition numbers for reductive groups. In the other direction, we can use some decomposition numbers for reductive groups to prove geometric results, such as a new proof of non-smoothness results, and a proof that some singularities are not equivalent (a conjecture of Malkin, Ostrik and Vybornov). We also give counterexamples to a conjecture of Mirković and Vilonen stating that the stalks of standard perverse sheaves over the integers on the affine Grassmannian are torsion-free, and propose a modified conjecture, excluding bad primes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructible sheaves on affine Grassmannians and geometry of the dual nilpotent cone

In this paper we study the derived category of sheaves on the affine Grassmannian of a complex reductive group Ǧ, contructible with respect to the stratification by Ǧ(C[[x]])-orbits. Following ideas of Ginzburg and Arkhipov– Bezrukavnikov–Ginzburg, we describe this category (and a mixed version) in terms of coherent sheaves on the nilpotent cone of the Langlands dual reductive group G. We also ...

متن کامل

Some bounds on unitary duals of classical groups‎ - ‎non-archimeden case

‎We first give bounds for domains where the unitarizabile subquotients can show up in the parabolically induced representations of classical $p$-adic groups‎. ‎Roughly‎, ‎they can show up only if the‎ ‎central character of the inducing irreducible cuspidal representation is dominated by the‎ ‎square root of the modular character of the minimal parabolic subgroup‎. ‎For unitarizable subquotients...

متن کامل

Representation theory, geometric Langlands duality and categorification

The representation theory of reductive groups, such as the group GLn of invertible complex matrices, is an important topic, with applications to number theory, algebraic geometry, mathematical physics, and quantum topology. One way to study this representation theory is through the geometric Satake correspondence (also known as geometric Langlands duality). This correspondence relates the geome...

متن کامل

Perverse sheaves and modular representation theory

This paper is an introduction to the use of perverse sheaves with positive characteristic coefficients in modular representation theory. In the first part, we survey results relating singularities in finite and affine Schubert varieties and nilpotent cones to modular representations of reductive groups and their Weyl groups. The second part is a brief introduction to the theory of perverse shea...

متن کامل

Structure Constants for Hecke and Representation Rings

In [KLM] the authors study certain structure constants for two related rings: the spherical Hecke algebra of a split connected reductive group over a local non-Archimedean field, and the representation ring of the Langlands dual group. The former are defined relative to characteristic functions of double cosets, and the latter relative to highest weight representations. They prove that the nonv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008